## MULTILINEAR MAPS AND TENSORS

Definition 19.1. Let $V_{1}, \ldots, V_{n}$ and $U$ be finite dimensional vector spaces. Then a map $f: V_{1} \times \cdots \times V_{n} \rightarrow U$ is multilinear if it is linear in each variable. More concretely, for each index $i$ and a fixed ( $n-1$ )-tuple $\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right)$, the map $v \mapsto f\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right)$ is linear.
Remark 19.2. A multilinear map $f: V_{1} \times V_{2} \rightarrow U$ is called a bilinear map.
Remark 19.3. In this class we will mostly consider vector spaces over $\mathbb{R}$. Occasionally we will consider vector spaces over $\mathbb{C}$.
Example 19.4. The map det : $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\left(v_{1}, \ldots, v_{n}\right) \mapsto \operatorname{det}\left(v_{1}|\cdots| v_{n}\right)
$$

is multilinear. Here on the right we think of the $v_{i}$ s as column vectors of the matrix $\left(v_{1}|\cdots| v_{n}\right)$.
Example 19.5. The cross product $\times: \mathbb{R}^{3} \times \cdots \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is bilinear.
Example 19.6. If $\mathfrak{g}$ is a Lie algebra, then the Lie bracket $[-,-]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ is bilinear.
Notation. $\operatorname{Mult}\left(V_{1}, \ldots, V_{n} ; U\right)=\left\{f: V_{1} \times \cdots \times V_{n} \rightarrow U \mid f\right.$ is multilinear $\}$
Remark 19.7. $\operatorname{Mult}\left(V_{1}, \ldots, V_{n} ; U\right)$ is a vector space.
Lemma 19.8. Suppose that $V, W, U$ are finite dimensional vector spaces over $\mathbb{R}$. Let $V$ have basis $\left\{v_{i}\right\}$ and dual basis $\left\{v_{i}^{*}\right\}$. Let $W$ have basis $\left\{w_{j}\right\}$ and dual basis $\left\{w_{j}^{*}\right\}$. Let $U$ have basis $\left\{u_{k}\right\}$ and dual basis $\left\{u_{k}^{*}\right\}$. Then $\left\{\phi_{i j}{ }^{k}: V \times W \rightarrow U \mid \phi_{i j}{ }^{k}(v, w)=v_{i}^{*}(v) w_{j}^{*}(w) u_{k}\right\}$ is a basis of $\operatorname{Mult}(V, W ; U)$.
Proof. If $b: V \times W \rightarrow U$ is bilinear, then for all $v \in V$ and all $w \in W$ :

$$
\begin{aligned}
b(v, w) & =b\left(\sum v_{i}^{*}(v) v_{i}, \sum w_{j}^{*}(w) w_{j}\right) \\
& =\sum v_{i}^{*}(v) w_{j}^{*}(w) b\left(v_{i}, w_{j}\right) \\
& =\sum v_{i}^{*}(v) w_{j}^{*}(w) u_{k}^{*}\left(b\left(v_{i}, w_{j}\right)\right) u_{k} \\
& =\sum u_{k}^{*}\left(b\left(v_{i}, w_{j}\right)\right) \phi_{i j}^{k}(v, w)
\end{aligned}
$$

Moreover, $\left\{\phi_{i j}{ }^{k}\right\}$ are linearly independent. Suppose not, then for all $v_{r}, w_{s}$ in the basis:

$$
\begin{aligned}
0 & =\sum c^{i j}{ }_{k} \phi_{i j}{ }^{k} \\
& =\sum c^{i j}{ }_{k} v_{i}^{*}\left(v_{r}\right) w_{j}^{*}\left(w_{s}\right) u_{k} \\
& =\sum c^{r s}{ }_{k} u_{k}
\end{aligned}
$$

Since $\left\{u_{k}\right\}$ is a basis, $c^{r s}{ }_{k}=0$ for all $r, s, k$.
Corollary 19.9. $\operatorname{dim} \operatorname{Mult}(V, W ; U)=\operatorname{dim} V \operatorname{dim} W \operatorname{dim} U$
Definition 19.10. The tensor product of two vector spaces $V$ and $W$ is another vector space $V \otimes W$ together with a bilinear map $\otimes: V \times W \rightarrow V \otimes W$ such that for any bilinear map $b: V \times W \rightarrow U$ there exists a unique $\bar{b}: V \otimes W \rightarrow U$ with $b=\bar{b} \circ \otimes$. In other words the diagram

commutes.
Notation. $\otimes(v, w)$ is usually written $v \otimes w$. Hence $b(v, w)=\bar{b}(v \otimes w)$ for all $v \in V$ and all $w \in W$.
Lemma 19.11. $V \otimes W$ exists. (i.e. $V \times W \xrightarrow{\otimes} V \otimes W$ exists)

Lemma 19.12. $V \otimes W$ is unique up to isomorphism.
Remark 19.13. Given a set $X$, there exists a vector space $F(X)$ with basis $X$. Informally $F(X)$ is the vector space of all finite linear combinations of elements of $X$ :

$$
F(X)\left\{\sum_{i=1}^{n} a_{i} x_{i} \mid a_{i} \in \mathbb{R}, x_{i} \in X\right\}
$$

Formally we can define $F(X)$ as a certain subspace of the space of all real-valued functions on $X$ :

$$
F(X)=\{f: X \rightarrow \mathbb{R} \mid f(x)=0 \text { for all but finitely many } x \in X\}
$$

In this case we have an "inclusion" $X \hookrightarrow F(X)$ given by $x \mapsto \delta_{x}$ where $\delta_{x}(y)= \begin{cases}1 & x=y \\ 0 & x \neq y\end{cases}$
The inclusion $X \hookrightarrow F X$ has the following universal property:
For any vector space $U$ and any map of sets $\varphi: X \rightarrow U$, there exists a unique linear map $\tilde{\varphi}: F(X) \rightarrow U$ such that $\left.\tilde{\varphi}\right|_{X}=\varphi$.
Proof of Lemma 19.11. We can construct $V \otimes W$ as a quotient of $F(V \times W)$ :

$$
V \otimes W=F(V \times W) / K
$$

Note that by the universal property of $F$ we have a canonical map $V \times W \hookrightarrow F(V \times W)$. consider the following collection $S$ of vectors in $F(V \times W)$ :

$$
S=\left\{\left.\begin{array}{c}
\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right) \\
\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right) \\
c(v, w)-(c v, w) \\
c(v, w)-(v, c w)
\end{array} \right\rvert\, v, v_{1}, v_{2} \in V, w, w_{1}, w_{2} \in W \text { and } c \in \mathbb{R}\right\}
$$

and set

$$
K \stackrel{\text { def }}{=} \operatorname{span}_{\mathbb{R}} S
$$

Now define

$$
V \otimes W \stackrel{\text { def }}{=} F(V \times W) / K
$$

and define $\otimes: V \times W \rightarrow V \otimes W$ to be the following composite map:

$$
V \times W \longrightarrow F(V \times W) \longrightarrow F(V \times W) / K
$$

Then $\otimes$ is bilinear by construction.
It remains to check the universal Property of $\otimes: V \times W \rightarrow V \otimes W$. Suppose that $b: V \times W \rightarrow U$ is bilinear. By the universal property of $V \times W \hookrightarrow F(V \times W)$ there exists a linear map $\tilde{b}: F(V \times W) \rightarrow U$ such that $\left.\tilde{b}\right|_{V \times W}=b$. Since $b$ is bilinear, for all $v_{1}, v_{2} \in V$ and all $w \in W$ we have

$$
\tilde{b}\left(\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right)\right)=b\left(v_{1}+v_{2}, w\right)-b\left(v_{1}, w\right)-b\left(v_{2}, w\right)=0
$$

Similarly

$$
\tilde{b}\left(\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right)\right)=0
$$

for all $v \in V, w_{1}, w_{2} \in W$ and

$$
\tilde{b}(c(v, w)-(c v, w))=0=\tilde{b}(c(v, w)-(v, c w))
$$

for all $c \in \mathbb{R}, v \in V, w \in W$. These computations imply that $\left.\tilde{b}\right|_{S}=0$. In turn this implies that $\left.\tilde{b}\right|_{K}=0$. Therefore there exists a unique linear map $\bar{b}: V \otimes W \rightarrow U$ with $\bar{b}(V \otimes W)=b(V, W)$.

Proof of Lemma 19.12. Suppose that we have two bilinear maps:

$$
\begin{gathered}
\otimes_{1}: V \times W \rightarrow V \otimes_{1} W \\
\otimes_{2}: V \times W \rightarrow V \otimes_{2} W \\
2
\end{gathered}
$$

with the universal property. Then by the universal property of $\otimes_{1}$, there exists a unique linear map $\bar{\otimes}_{2}$ : $V \otimes_{1} W \rightarrow V \otimes_{2} W$ so that

commutes Similarly, by the universal property of $\otimes_{2}$ there exists a unique linear map $\bar{\otimes}_{1}: V \otimes_{2} W \rightarrow V \otimes_{1} W$ so that

commutes. Therefore the following diagram commutes


By uniqueness, $\bar{\otimes}_{1} \circ \bar{\otimes}_{2}=\mathrm{id}_{V \otimes_{1} W}$. Similarly $\bar{\otimes}_{2} \circ \bar{\otimes}_{1}=\mathrm{id}_{V \otimes_{2} W}$. So $\bar{\otimes}_{1}$ and $\bar{\otimes}_{2}$ are the desired isomorphism.

Lemma 19.14. The map $\varphi: \operatorname{Hom}(V \otimes W, U) \rightarrow \operatorname{Mult}(V \times W, U), \varphi(A)=A \circ \otimes$ is an isomorphism of vector spaces.
Proof. By the universal property of $\otimes$ for any $b \in \operatorname{Mult}(V \times W, U)$ there is a unique $\bar{b} \in \operatorname{Hom}(V \otimes W, U)$ with $b=\bar{b} \circ \otimes$. Hence $\varphi$ is one-to-one and onto.

